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LETTER TO THE EDITOR

A new class of completely integrable quantum spin chains

Tomǎz Prosen
Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska
19, 1111 Ljubljana, Slovenia

Received 17 February 1998

Abstract. A large (infinitely dimensional) class of completely integrable (possibly non-
autonomous) spin-1

2 chains is discovered associated to an infinite-dimensional Lie algebra of
infinite rank. The complete set of integrals of motion is constructed explicitly, as well as
their eigenstates and spectra. As an example we outline thekicked Ising model: Ising chain
periodically kicked with transversal magnetic field.

During the past three decades intricate algebraic techniques (under the namesquantum
inverse scatteringor algebraic Bethe ansatz) have been developed [1] in order to construct
integrable quantum many-body (IQM) dynamical systems and the associated complete sets
of integrals of motion. Integrability of a quantum many-body dynamical system is defined in
a generalized Liouvilean sense; namely by the existence of an infinite set of (independent and
local) conservation laws. All of the IQM systems discovered to date are one-dimensional,
typically SU(2) spin chains or related systems. Quantum integrability isnon-genericbut
of great importance, since it has been shown recently [2] that the existence of non-trivial
conservation laws generically leads to ideal transport properties with infinite Kubo transport
coefficients, and deviation fromquantum ergodicityin general.

In this letter we present a new and elementary approach to the construction of IQM one-
dimensional lattice systems. It is based on the particular infinite-dimensional dynamical Lie
algebra (DLA) generated and represented by the essential dynamical observables (in our case
it is generated by the Ising Hamiltonian

∑
j σ

x
j σ

x
j+1 and the interaction with the transversal

external field
∑
j σ

z
j ) and for which the ‘transfer matrix’ can be explicitly constructed from

the commutativity condition. We show thatany elementH of DLA may be considered as
a Hamiltonian of an IQM system and construct an analytic DLA-valued functionT (λ) of
a possibly vectorial spectral parameterλ ∈ CN (for someN > 1), commuting withH ,
[H, T (λ)] ≡ 0. T (λ) is a formal analogue of thelogarithm of the transfer matrix. The
integrals of motion (conserved charges and currents) are derived as coefficients of Taylor
expansion ofT (λ) aroundλ = 0. Therefore we have an infinite-dimensional class of IQM
Hamiltonian systems. Furthermore,real DLA of self-adjoint observables generates infinite-
dimensional unitary dynamical Lie group of even larger class of integrable quantum many-
body propagators of possibly non-Hamiltonian (non-autonomous, for example,periodically
kicked) IQM systems. As an example we calculate a kicked one-dimensional Ising chain
periodically kicked with a transversal external field. Moreover, we explicitly calculate the
complete set of eigenstates and spectra of the conserved charges (including the Hamiltonian).

Let us consider infinite chains of spins having the magnitude1
2 on each sitej . A spin

at sitej is described by spin-1
2 variables (Pauli matrices)σ sj , s ∈ {1 = x, 2 = y, 3 = z},
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obeying the standard commutation relations [σ
p

j , σ
r
k ] = 2δjkσ

p

j σ
r
k = 2iδjk

∑
s εprsσ

s
j , and a

unit matrix σ 0
j = 1. We start with the following Lie algebraU over an infinite spin chain

spanned by the spatially homogeneous local observables

Z[s1s2...sp ] =
∞∑

j=−∞
σ
s1
j σ

s2
j+1 . . . σ

sp
j+p−1. (1)

We assume thats1, sp 6= 0, and that we have infinite direct products of unit matricesσ 0
j to

the left- and right-hand side of each term in (1).
The order of the local observableA is defined as the maximal number of digitsp of

some observable (1) in the expansion ofA in terms of basis (1). We are interested in non-
trivial infinite-dimensional subalgebras ofU for which the number of elements with order
smaller thanp grows algebraically (as a function ofp) and not exponentially (∼ 4p) as for
U†. Indeed we found subalgebraS, which we call DLA (essentially generated byZ[3] and
Z[11]), and spanned by two infinite sequences of self-adjoint observablesUn andVn,

Un =


Z[1(3n−1)1] n > 1

−Z[3] n = 0

Z[2(3−n−1)2] n 6 −1

Vn =


Z[1(3n−1)2] n > 1

Z[0] n = 0

−Z[2(3−n−1)1] n 6 −1

(2)

for−∞ < n <∞ ((3n) indicates digit 3 being repeatedn times), which satisfy the following
commutation relations

[Um,Un] = 2i(Vm−n − Vn−m)
[Vm, Vn] = 0

[Um, Vn] = 2i(Um+n − Um−n).
(3)

The order of observablesUn andVn is |n| + 1. The covering algebraU is equiped with the
Euclidean metric associated with the bilinear form (scalar product)

(A|B) = lim
L→∞

1

L2L
trL(A

†B) (4)

(trL is a trace for a finite system of sizeL) with respect to which (1) is an orthonormal
(ON) basis. Further,Un and Vn form an ON basis of DLAS in the same metric.
Note that (4) isinvariant with respect to theadjoint map, (adA)B = [A,B], namely
((adA†)B|C) = (B|(adA)C).

Conservation laws in general autonomous case

Let us assume that the HamiltonianH and the logarithm of the transfer matrixT belong to
DLA S. We write

H =
m+∑

m=−m−
(hmUm + gmVm) (5)

† In the forthcoming publication (T Prosen 1998 Quantum invariants of motion in a generic many-body system
Preprint cond-mat/9803358) we discuss an ‘exponentially large’invariant dynamical Lie subalgebra ofU,
corresponding to anon-integrablekicked HeisenbergXXZ chain, whose power grows as∼ 1.7p and in which we
find (few) non-trivial local conservation laws that explain deviations from quantum ergodicity and normal transport
as observed numerically in [3].
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T =
∞∑

m=−∞
(amUm + bmVm) (6)

where the HamiltonianH has a finite orderM := max{m+, m−}. The commutativity relation
[H, T ] = 0 results in the system of difference equations∑

m

hm(a−n+m − an+m) = 0∑
m

[hm(bn−m − b−n+m)+ gm(an+m − an−m)] = 0
(7)

which can be solved with an ansatz

an = a+λn bn = b+λn
a−n = a−λn b−n = b−λn

(8)

for n > 0. Quite surprisingly, the resulting homogeneous system(
h(λ) −h(λ−1) 0 0
ga(λ) 0 h(λ−1) −h(λ−1)

0 ga(λ) h(λ) −h(λ)

)
a+
a−
b+
b−

 = 0 (9)

has rank 2 forany value of thespectral parameterλ, whereh(λ) andga(λ) := g(λ)−g(λ−1)

are the polynomials

h(λ) =
m+∑

m=−m−
hmλ

m g(λ) =
m+∑

m=−m−
gmλ

m.

Hence, there are two linearly independent solutions of (9) (up to an arbitrary common
prefactor), namely

a+(λ) = h(λ−1) b+(λ) = g(λ−1)

a−(λ) = h(λ) b−(λ) = g(λ)
(10)

and

a+(λ) = a−(λ) ≡ 0 b+(λ) = b−(λ) ≡ 1. (11)

(i) First let us consider the case where the solutionsa±(λ), b±(λ) are given by (10). The
global uniform solution (for alln ∈ Z) is given by a linear combination ofN := m++m−+1
solutions (10)

an =
N∑
m=1

cma+(λm)λnm bn =
N∑
m=1

cmb+(λm)λnm (12)

for n > 0, and

an =
N∑
m=1

cma−(λm)λ−nm bn =
N∑
m=1

cmb−(λm)λ−nm (13)

for n 6 0. N -tuple of spectral parametersλ = (λ1, . . . , λN) is an arbitrary subset of a
complex unit disk|λm| < 1 (in order to ensure convergence ofT ) while the coefficientscm
are determined by gluing the solutions (12) and (13) onm+ + m− = N − 1 sites around
n = 0, giving a homogeneous system ofN − 1 linear equations

N∑
m=1

(λnm − λ−nm )cm = 0 n = 1, . . . , N (14)
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with a general (polynomial) solution

cm(λ) = (−1)mλN−1
m

j,k 6=m∏
j6k

(1− λjλk)
j,k 6=m∏
j<k

(λj − λk). (15)

Logarithmic transfer matrixT (λ) is a holomorphic function inλ, and the coefficients
of its Taylor expansion aroundλ = 0 also commute withH . After some simple series
manipulations we easily find an infinite sequence of independent integrals of motion, namely
the conserved chargesQk, k > 0, [H,Qk] = 0, (note thatQ0 = 2H )

Qk =
m+∑

m=−m−
[hm(Uk+m + U−k+m)+ gm(Vk+m + V−k+m)]. (16)

(ii) In another case, the solutionsa±(λ), b±(λ) are given by (11) and aready solve (7)
globally (so N = 1). The logarithmic transfer matrix is now rather trivial,T (λ) =∑∞

m=1(Vm + V−m)λm, giving theconserved currentsCk, k > 0, [H,Ck] = 0,

Ck = Vk+1+ V−k−1 = Z[1(3k)2] − Z[2(3k)1]. (17)

C0 is the particle current of the associated spinless fermion model (via the Wigner–Jordan
transformation),C1 is the energy current, etc.

It can easily be verified directly such that [T(i)(λ), T(i)(µ)] ≡ 0, [T(i)(λ), T(ii)(µ)] ≡ 0,
and [T(ii)(λ), T(ii)(µ)] ≡ 0. Hence all the conservation laws are in involution [Qk,Ql ] =
[Qk,Cl ] = [Ck, Cl ] = 0. For example, for the Ising model in a transversal magnetic field,
H = JU1 + hU0, one recovers well known conservation lawsQk = J (Uk+1 + U1−k) +
h(Uk + U−k) andCk (17) which required more involved methods in [4].

Conservation laws in the non-autonomous case, kicked-Ising model

Next we study more general and possiblynon-autonomousquantum spin chains which are
propagated by members of a unitary Lie group generated by DLAS which in general
cannot be written in terms of some HamiltonianH , as exp(−iH). For simplicity, we
considerperiodically kicked systemswhich correspond to time-dependent Hamiltonian

H(t) = H0+ δp(t)H1 (18)

whereδp(t) is a periodic delta function of period 1, andH0, H1 ∈ S are the generators—the
kinetic energy and the potential, respectively. Using the adjoint representation of DLA, the
(linear) Heisenberg mapUad of an observableA ∈ S for one timestep is factorized as

A(t + 1) = UadA(t) = Uad
1 U

ad
0 A(t) (19)

whereUad
p A = exp(i adHp)A = exp(iHp)A exp(−iHp), is the propagation by the kinetic

energy and the potential, forp = 0, 1, respectively. The transfer matrix is now sought by
the invariance condition

UadT (λ) = T (λ) (20)

in the form (6). The method of the solution is analogous to (7)–(15) whereas the difference
equations foran, bn are now obtained by means of adjoint representation of propagators
which can be derived explicitly by means of equations (3) and series expansion of the
exponential function; for example if it is generated byUm

exp(iα adUm)Un = c2Un + s2U2m−n + cs(Vn−m − Vm−n)
exp(iα adUm)Vn = c2Vn + s2V−n − cs(Um+n − Um−n)
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wherec = cos(2α), s = sin(2α).
Here, the general procedure cannot be written as explicitly as in the autonomous case,

so we work out in detail an example of akicked-Isingmodel where the kinetic generator
is at the usual one-dimensional Ising Hamiltonian,H0 = JU1 =

∑
j Jσ

x
j σ

x
j+1, and the kick

potential is the transversal magnetic field,H1 = hU0 =
∑
j hσ

z
j . Condition (20) results in

the system of second-order difference equations foran, a−n, bn, b−n which is solved through
the ansatz (8) giving the solution (again for any|λ| < 1)

a+(λ) = sJ ch + cJ shλ−1 b+(λ) = sJ sh(λ− λ−1)/4

a−(λ) = sJ ch + cJ shλ b−(λ) = −b+(λ)
(21)

wheresJ = sin(2J ), cJ = cos(2J ), sh = sin(2h), ch = cos(2h), and the trivial solution (11).
In order to obtain the global solution(an, bn) we again glue together a linear combination
of partial solutions for positive and negativen at the two points (since the system is of
second order), for example atn = 0, 1. We obtain the system (14) for the three coefficients
cm, N = 3, depending on a triple of spectral parametersλ = (λ1, λ2, λ3) with the solution
(15). Collecting the terms with different powers ofλm in the power series expansion of the
logarithmic transfer matrixT (λ) we obtain two infinite sets of conservation laws, namely
the chargesQk, k > 0, UadQk = Qk,

Qk = cJ sh(Uk+1+ U−k+1)+ sJ ch(Uk + U−k)− sJ sh(Vk+1+ V−k+1− Vk−1− V−k−1)

(22)

and currents (17),Ck, k > 0,UadCk = Ck. The conservation laws of the kicked-Ising model
(22) are identical to the invariants (16) of an autonomous IQM system with the Hamiltonian
HKI = Q0/2= cJ shU1+ sJ chU0− sJ sh(V1−V−1)/2. Note, however, that the full dynamics
are not identical, exp(i adHKI ) 6= Uad.

Structure of DLA and the diagonalization of conserved charges

Let us now analyse the structure of DLAS more carefully. The current invariantsCk are
rather trivial; they span amaximal idealI of DLA S, [S, I] = 0. The derived (semisimple)
DLA S′ = [S,S] = (adS)∞S = S/I is spanned byUm±U−m andVm−V−m, for m > 0,
or in terms ofreal non-local Fourier transformed basis

J 1(κ) = i

8π

∞∑
m=−∞

eiκm(Um − U−m)

J 2(κ) = i

8π

∞∑
m=−∞

eiκm(Vm − V−m)

J 3(κ) = − 1

8π

∞∑
m=−∞

eiκm(Um + U−m)

(23)

for 06 κ < π , where the commutation relations read

[Jp(κ), J r(κ ′)] = iδ(κ − κ ′)
∑
s

εprsJ
s(κ). (24)

Therefore, derived DLA is isomorphic to an infinite direct sumS′ ∼⊕∞n=1 su2. It has an
infinite rank, Cartan subalgebra is spanned by a continuous root basisJ 3(κ) and Chevalley
generators areJ±(κ) = J 1(κ) ± iJ 2(κ). Now we construct thevacuum state|∅〉 by
the conditionJ−(κ)|∅〉 ≡ 0, which is equivalent to(Um − U−m − iVm + iV−m)|∅〉 ≡ 0,
and alsoσ−j |∅〉 ≡ 0. Hence the vacuum is the state withall spins down. Let us
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write the Fourier transform of the currents and charges as,C(κ) = ∑
n exp(iκm)Cm

andQ(κ) = ∑
m exp(iκm)Qm = Q(−κ), respectively. Note thatQ(κ) = Q(−κ) since

Qm = Q−m. Using the explicit form (16) we compute

Q(κ) = −8πq(κ) · J(κ)+ gr(κ)C(κ)
q(κ) = (hi(κ), gi(κ), hr(κ))

(25)

where hr(κ) = Reh(exp(iκ)), hi(κ) = Im h(exp(iκ)), gr(κ) = Reg(exp(iκ)), gi(κ) =
Im g(exp(iκ)). The structure (24) is invariant with respect to arbitrary local (κ-dependent)
rotation (non-Abelian gauge transformation) of the vector fieldJ(κ). Particularly interesting
is the rotationR(κ) around axisa(κ),

a(κ) = (gi(κ),−hi(κ), 0)√
g2
i (κ)+ h2

i (κ)

a(κ) · q(κ) ≡ 0

for an angleϕ(κ),

ϕ(κ) = arctan

√
g2
i (κ)+ h2

i (κ)

hr(κ)

namely,Rr = (a · r)a+ q·r
|q| k + (a×q)·r

|a×q|
a×k
|a×k| , wherek = (0, 0, 1), which has the property

R(κ)q(κ) = |q(κ)|k. The unitary transformation of the vector field

W (κ) = R(κ)J(κ) = exp

(
i
∫ π

0
dκ ϕa · J

)
J exp

(
− i

∫ π

0
dκ ϕa · J

)
makes the the conserved chargesQ(κ) proportional to the new root basisW3(κ) =
q(κ) · J(κ)/|q(κ)|, namely

Q(κ) = −8π |q(κ)|W 3(κ)+ gr(κ)C(κ). (26)

Using the same rotation we construct a new vacuum state|∅〉W relative to the fieldW (κ),
W−(κ)|∅〉W ≡ 0, namely,

|∅〉W = exp

(
i
∫ π

0
dκ ϕ(κ)a(κ) · J(κ)

)
|∅〉.

Let us now discretize the momentumκ to L bins which corresponds to (but is not identical
to) a finite chain ofL spins, and define

W
p

k :=
∫ πk/L

π(k−1)/L
dκ Wp(κ), 16 k 6 L.

Then we have [Wp

k ,W
r
l ] = iδkl

∑
s εprsW

s
k . The eigenstates of conserved chargesQ(κ)

(and of root basisW 3
k since [Q(κ),W 3(κ ′)] ≡ 0) can be labelled byL binary quantum

numbersck ∈ {0, 1}, k = 1, . . . , L, and are constructed by means of creation operators

|ck〉 =
( ck=1∏

16k6L
W+k

)
|∅〉W (27)

with W 3
l |ck〉 = (cl − 1

2)|ck〉. Hence, for smooth|q(κ)| and largeL, all the charges (26)
are diagonal in the eigenbasis (27). Of course, theeigenvaluesare finite (for the infinite
systemL = ∞) only for the chargedensitiesQ′m = limL→∞(1/L)Qm|L and not for the
extensivechargesQm. The eigenvalues of invariant densities are computed by taking the
limit L→∞ and the inverse cosine transform

Q′m|c(κ)〉 = −
8

π

∫ π

0
dκ ′ cos(κ ′m)|q(κ ′)|[c(κ ′)− 1

2]|c(κ)〉.
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Label c(κ) is an arbitrary (under certain restrictions, for example, being measurable)index
functionc : [0, π)→ {0, 1} (for finite L, c(κ) = ck, π(k−1)/L 6 κ < πk/L) and|c(κ)〉 is
the corresponding eigenstate which should be properly defined by some limiting procedure
L→∞ of (27). It seems that the spectrum ofQ′m is purely continuous. On the other hand,
for the currents we haveCm|c(κ)〉 ≡ 0, since [C(κ),Wl ] ≡ 0. Having such a transparent
structure (24)–(27) it should be an easy task to compute physically interestingcorrelation
functions.

In this letter we have introduced aninfinitely dimensional spaceof completely IQM
systems (spin-12 chains or chains of spinless fermions), the so-called DLA, as opposed to
few-parameter families of completely IQM systems known in the literature to date. The
model is an infinite-dimensional extension of the Ising model in transversal field (equivalent
to theXY -model [4] and to the one-dimensional free fermion theory). For every element
of the algebra which is interpreted as a Hamiltonian, or any propagator from the associated
unitary Lie group being generated by a finite number of elements of the algebra (such as the
Ising model periodically kicked by the transversal magnetic field), we construct two infinite
sets of quantum invariants of motion, the conserved charges and the conserved currents. Is
is shown heuristically how to diagonalize these conservation laws. Explicit expressions of
the conserved charges are quite simple (much simpler than in general Heisenberg (XYZ)
or the Hubbard model [5], for example) though non-trivial.

Financial support from the Ministry of Science and Technology of R Slovenia is gratefully
acknowledged.
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