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LETTER TO THE EDITOR

A new class of completely integrable quantum spin chains

Toma Prosen

Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska
19, 1111 Ljubljana, Slovenia

Received 17 February 1998

Abstract. A large (infinitely dimensional) class of completely integrable (possibly non-
autonomous) spir%— chains is discovered associated to an infinite-dimensional Lie algebra of
infinite rank. The complete set of integrals of motion is constructed explicitly, as well as
their eigenstates and spectra. As an example we outlinéithed Ising model Ising chain
periodically kicked with transversal magnetic field.

During the past three decades intricate algebraic techniques (under the gaamgsm
inverse scatteringr algebraic Bethe ansajzhave been developed [1] in order to construct
integrable quantum many-body (IQM) dynamical systems and the associated complete sets
of integrals of motion. Integrability of a quantum many-body dynamical system is defined in

a generalized Liouvilean sense; namely by the existence of an infinite set of (independent and
local) conservation laws. All of the IQM systems discovered to date are one-dimensional,
typically SU(2) spin chains or related systems. Quantum integrabilityoisgenericbut

of great importance, since it has been shown recently [2] that the existence of non-trivial
conservation laws generically leads to ideal transport properties with infinite Kubo transport
coefficients, and deviation fromuantum ergodicityin general.

In this letter we present a new and elementary approach to the construction of IQM one-
dimensional lattice systems. It is based on the particular infinite-dimensional dynamical Lie
algebra (DLA) generated and represented by the essential dynamical observables (in our case
it is generated by the Ising Hamiltonidn; o707, ; and the interaction with the transversal
external field)_ i af) and for which the ‘transfer matrix’ can be explicitly constructed from
the commutativity conditionWe show thatny elementH of DLA may be considered as
a Hamiltonian of an IQM system and construct an analytic DLA-valued functioh) of
a possibly vectorial spectral parametere CV (for someN > 1), commuting withH,

[H, T(N)] = 0. T(\ is a formal analogue of thivgarithm of the transfer matrix The
integrals of motion (conserved charges and currents) are derived as coefficients of Taylor
expansion off' (A) aroundX = 0. Therefore we have an infinite-dimensional class of IQM
Hamiltonian systems. Furthermomeal DLA of self-adjoint observables generates infinite-
dimensional unitary dynamical Lie group of even larger class of integrable quantum many-
body propagators of possibly non-Hamiltonian (non-autonomous, for exapmiedically

kicked IQM systems. As an example we calculate a kicked one-dimensional Ising chain
periodically kicked with a transversal external field. Moreover, we explicitly calculate the
complete set of eigenstates and spectra of the conserved charges (including the Hamiltonian).

Let us consider infinite chains of spins having the magnit’;ldm each sitgj. A spin

at site j is described by spir%— variables (Pauli matrices);, s € {1 =x,2=y,3 =1z},
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obeying the standard commutation relationﬁ,[a,g] = 26jkaj”ak’ = 2i8jx ), €prs07, and a
unit matrix o = 1. We start with the following Lie algebrgl over an infinite spin chain
spanned by the spatially homogeneous local observables

Yl 52 P
Llsisy.s)] = § : 0;°0;41+--0j1p 1 (1)

j=—00

We assume that, s, # 0, and that we have infinite direct products of unit matriefsto
the left- and right-hand side of each term in (1).

The order of the local observablel is defined as the maximal number of digjisof
some observable (1) in the expansion4ofn terms of basis (1). We are interested in non-
trivial infinite-dimensional subalgebras of for which the number of elements with order
smaller thanp grows algebraically (as a function gf) and not exponentially~ 4?) as for
Uf. Indeed we found subalgebé, which we call DLA (essentially generated Bys; and
Zp117), and spanned by two infinite sequences of self-adjoint observahlesid V,,,

Zi@] nz1l
U, =3 —Zp3 n=20
ZppE12) n< -1 @
Zn@anz n=1
Vn = Z[o] n=20
—Zpr1 n< -1

for —oo < n < o0 ((3") indicates digit 3 being repeatedimes), which satisfy the following
commutation relations
[Um’ Un] = 2i(men - anm)
[Vma Vn] =0 (3)
[Um, Vn] = 2i(Um+n - Umfn)-
The order of observablgs, andV, is |n| + 1. The covering algebrdl is equiped with the
Euclidean metric associated with the bilinear form (scalar product)

. 1
(AlB) = lim = tr, (ATB) 4)

(tr, is a trace for a finite system of size) with respect to which (1) is an orthonormal
(ON) basis. FurtherU, and V, form an ON basis of DLAG in the same metric.
Note that (4) isinvariant with respect to theadjoint map (adA)B = [A, B], namely
((@dA")B|C) = (B|(adA)C).

Conservation laws in general autonomous case

Let us assume that the Hamiltoni&h and the logarithm of the transfer matrixbelong to
DLA &. We write

H= " (tnUn+ gnVi) ®)

m=—m-_

T In the forthcoming publication (T Prosen 1998 Quantum invariants of motion in a generic many-body system
Preprint cond-mat/9803358) we discuss an ‘exponentially largwariant dynamical Lie subalgebra ok,
corresponding to aon-integrablekicked Heisenber X Z chain, whose power grows as1.7” and in which we

find (few) non-trivial local conservation laws that explain deviations from quantum ergodicity and normal transport
as observed numerically in [3].
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T = Z (am Um + bm Vm) (6)

m=—00

where the Hamiltoniai#/ has a finite ordeM := max{m .., m_}. The commutativity relation
[H, T] = 0 results in the system of difference equations

Z hm(a—pym — anym) =0

@
Z[hm (bn—m - b—n+1n) + gm (an+n1 - an—m)] = 0
which can be solved with an ansatz
n = ap\" b, = b A"
e L (®)
a, =a_x: b_,=b_\
for n > 0. Quite surprisingly, the resulting homogeneous system
h() —hOhH 0 0 @
(gau) 0 A —h(x1)> L ©)
0 &® R —h() /7

has rank 2 foany value of thespectral parametei, wherei(x) andg, (1) := g(A)—g(A™1)
are the polynomials

W)= 3 ha" g0y = Y g

m=—m-_ m=—m_

Hence, there are two linearly independent solutions of (9) (up to an arbitrary common
prefactor), namely

ary()=hG"H b)) =g (10)

a-(x) =h) b_(A)=¢g®)
and

ar(M) =a_(1)=0 be(W) =b_(1) =1 (11)

(i) First let us consider the case where the solutienér), b (1) are given by (10). The
global uniform solution (for alk € Z) is given by a linear combination & :=m+m_+1
solutions (10)

N N
a, = Z Cng (M)A, b, = Z Cmbt (M)A, (12)
m=1 m=1

for n > 0, and

M=

Cmb— ()\m))\;ln (13)

N
a, = Zcma—()\m))\n:n b, =
m=1

m=1

for n < 0. N-tuple of spectral parameters\ = (A1, ..., Ay) is an arbitrary subset of a
complex unit diski2,,| < 1 (in order to ensure convergence®f while the coefficients:,
are determined by gluing the solutions (12) and (13non+ m_ = N — 1 sites around
n = 0, giving a homogeneous system @f— 1 linear equations

N
Z(A';ln - )"r;n)cm =0 n = 1, ey N (14)
m=1
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with a general (polynomial) solution

J.k#m J.k#m
) = D"t [T a-nm0 T @ — 20 (15)
Jj<k Jj<k

Logarithmic transfer matrix? (A) is a holomorphic function in\, and the coefficients

of its Taylor expansion around = 0 also commute withH. After some simple series
manipulations we easily find an infinite sequence of independent integrals of motion, namely
the conserved charge®y, k > 0, [H, Q] = 0, (note thatQg = 2H)

m+

Qk = Z [hm(Uk+m + U—k+m) + gm(vk-&-m + V—k+n1)]~ (16)
(i) In another case, the solutions. (1), b+ (1) are given by (11) and aready solve (7)
globally (so N = 1). The logarithmic transfer matrix is now rather trivid,(A) =
Z'C;o:l(Vm + V_,)A™, giving theconserved current€y, k > 0, [H, C;] = 0,

Ci = Vig1 + Vojo1 = Zjiaoyo — Zpayy- (17)

Co is the particle current of the associated spinless fermion model (via the Wigner—Jordan
transformation)C; is the energy current, etc.

It can easily be verified directly such that}(X), T;) ()] = 0, [T;)(N), Tiin(n)] =0,
and [Ii;;y(A), Ti;(w)] = 0. Hence all the conservation laws are in involutiad[ Q;] =
[0k, C/]1 = [Ck, C/] = 0. For example, for the Ising model in a transversal magnetic field,
H = JU; + hU,, one recovers well known conservation la@g = J(Upi1 + U ) +
h(Uy + U_y) and Cy (17) which required more involved methods in [4].

Conservation laws in the non-autonomous case, kicked-Ising model

Next we study more general and possiblyn-autonomousgjuantum spin chains which are
propagated by members of a unitary Lie group generated by BLAvhich in general
cannot be written in terms of some HamiltoniaF, as exg—iH). For simplicity, we
considerperiodically kicked systemahich correspond to time-dependent Hamiltonian

H(t) = Ho+ 8,(1)Hy (18)

wheres, (¢) is a periodic delta function of period 1, afy, H; € S are the generators—the
kinetic energy and the potential, respectively. Using the adjoint representation of DLA, the
(linear) Heisenberg map2® of an observablet € & for one timestep is factorized as

A(t +1) = UMA(r) = URUZYA (1) (19)

where U,?dA = expiadH,)A = exp(iH,)A exp(—iH,), is the propagation by the kinetic
energy and the potential, for = 0, 1, respectively. The transfer matrix is now sought by
the invariance condition

U7 (\) = T () (20)

in the form (6). The method of the solution is analogous to (7)—(15) whereas the difference
equations fora,, b, are now obtained by means of adjoint representation of propagators
which can be derived explicitly by means of equations (3) and series expansion of the
exponential function; for example if it is generated Gy,

explic adU,)U, = c?U, + s2Uzp—n + ¢S (Voo — Vi)
explioc adU,,)V, = 2V, + 52V_, — ¢s(Upsn — Up—n)
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wherec = cog2x), s = sin(2x).

Here, the general procedure cannot be written as explicitly as in the autonomous case,
so we work out in detail an example ofkicked-Isingmodel where the kinetic generator
is at the usual one-dimensional Ising Hamiltoni&fy,= JU; = Zj Jojoiy, and the kick
potential is the transversal magnetic fielth = hUp = Zj ho;. Condition (20) results in
the system of second-order difference equationgfot_,, b,, b_, which is solved through

the ansatz (8) giving the solution (again for any < 1)

ay (L) = syep +cpsph by(h) =sysu(h — 171 /4
a_(A) = sycp + cyspA b_(A) =—-b (A)

wheres; = sin(2J), c¢; = co92J), s, = sin(2h), ¢;, = cog2h), and the trivial solution (11).

In order to obtain the global solutioa,, b,) we again glue together a linear combination
of partial solutions for positive and negatiweat the two points (since the system is of
second order), for example at= 0, 1. We obtain the system (14) for the three coefficients
cmy, N = 3, depending on a triple of spectral paramet®rs (A1, A2, A3) with the solution
(15). Collecting the terms with different powers &of in the power series expansion of the
logarithmic transfer matrix" (\) we obtain two infinite sets of conservation laws, namely
the chargegy, k > 0, U290, = O,

Ok = cysp(Uigr +U_jy1) +55c0 (U +U_y) — sy5p(Vigr + Vopyr — Vi — V1)

(21)

(22)

and currents (17)¢, k > 0, U2C, = C,. The conservation laws of the kicked-Ising model
(22) are identical to the invariants (16) of an autonomous IQM system with the Hamiltonian
Hy) = Qo/2 = cyspyUr+syc,Uo—sys, (Vi — V_1)/2. Note, however, that the full dynamics
are not identical, expad Hy;) # U

Structure of DLA and the diagonalization of conserved charges

Let us now analyse the structure of DL& more carefully. The current invariantg, are
rather trivial; they span maximal idealJ of DLA &, [&, 3] = 0. The derived (semisimple)
DLA &' =[6, 6] = (ad&)>*6 = &/7J is spanned by/,,+U_,, andV,,—V_,,, form > 0,
or in terms ofreal non-local Fourier transformed basis

[ — ikm
Tk) = & mg_mé (Un — U_p)
[ - ikm
J2(kc) = ng_ooé (Vi — V) (23)

1 S ikcm
Py =—g= ) €U+ U

m=—0oQ

for 0 < ¥k < 7, where the commutation relations read
[J7(k), J7 ()] =180 — k') Y €prd* (1), (24)

Therefore, derived DLA is isomorphic to an infinite direct s@h~ @, , su,. It has an
infinite rank, Cartan subalgebra is spanned by a continuous root b&sis and Chevalley
generators are/* (k) = J(k) & iJ%(k). Now we construct thevacuum state|@) by
the condition/~ («)|#) = 0, which is equivalent tdU,, — U_,, —iV,, +iV_,)|¥) = 0,
and aISOGj‘UZ)) = 0. Hence the vacuum is the state wistl spins down Let us
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write the Fourier transform of the currents and charges@&&) = ), explikm)C,
and Q(k) = >, explikm)Q,, = Q(—«), respectively. Note thaQ(x) = Q(—«) since
0., = O_,,. Using the explicit form (16) we compute

Q) = —8rq(k) - J (k) + g (k)C (k)

q(k) = (hi(k), gi(x), hy(k))
where i, (k) = Reh(exp(ix)), h;(x) = Imh(expix)), g (k) = Reg(expix)), gi(k) =
Im g(exp(ix)). The structure (24) is invariant with respect to arbitrary loeatiépendent)
rotation (non-Abelian gauge transformation) of the vector fibld). Particularly interesting
is the rotationR («) around axisa(x),

— (gi(K)s _hi(K)’ O)

(25)

a(x) a(k)-qk)=0
V82() + h2 (k)
for an anglep(x),
t V82() + h2 (k)
= n—————
¢(k) = arctal )
namely,Rr = (a - r)a + Lrk + (LXOL @k wherek = (0,0, 1), which has the property
R(k)q(k) = |q(x)|k. The unitary trans#ormation of the vector field

Wi(k) = R(k)J (k) = exp(i /ﬂ de pa - J)Jexp( —i fﬂ dk ¢a - J)
0 0

makes the the conserved charg@s«) proportional to the new root basi®s(x) =
q(x) - J(k)/1q(x)|, namely
0(k) = —8m|q(k)|W3(k) + g, (k) C (k). (26)

Using the same rotation we construct a new vacuum $ffte relative to the fieldW (),
W~ (k)|4)w = 0, namely,

D)w = eXP<i/O dec p(k)a(k) - J(K))IW

Let us now discretize the momentwmo L bins which corresponds to (but is not identical
to) a finite chain ofL spins, and define

wk/L

w/ ::/ de WP(k), 1<k<L.
w(k—1)/L

Then we have Wkp, W/l =i Y, €,sW;. The eigenstates of conserved charges)

(and of root basisW,f' since [Q(k), W3(x")] = 0) can be labelled by. binary quantum

numberse, € {0,1}, k =1, ..., L, and are constructed by means of creation operators

=1
lex) = ( I W:>|w>w (27)
1<k<L

with W,3|ck) = (¢ — %)|ck). Hence, for smoothq(x)| and largeL, all the charges (26)
arediagonal in the eigenbasis (27). Of course, thigenvaluesare finite (for the infinite
systemL = oo) only for the chargedensitiesQ,, = lim;_(1/L)Q,,|; and not for the
extensivechargesQ,,. The eigenvalues of invariant densities are computed by taking the
limit L — oo and the inverse cosine transform

8 T
Q) lete)) = /0 de’ cost’m)lg( e’y — 2le()).
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Label c(x) is an arbitrary (under certain restrictions, for example, being measuiabky
functionc : [0, 7) — {0, 1} (for finite L, c¢(x) = ¢x, m(k—1)/L < k < wk/L) and|c(x)) is
the corresponding eigenstate which should be properly defined by some limiting procedure
L — oo of (27). It seems that the spectrum @f, is purely continuous. On the other hand,
for the currents we hav€,,|c(x)) = 0, since [ (x), W;] = 0. Having such a transparent
structure (24)—(27) it should be an easy task to compute physically interestirajation
functions

In this letter we have introduced anfinitely dimensional spacef completely IQM
systems (spir% chains or chains of spinless fermions), the so-called DLA, as opposed to
few-parameter families of completely IQM systems known in the literature to date. The
model is an infinite-dimensional extension of the Ising model in transversal field (equivalent
to the XY-model [4] and to the one-dimensional free fermion theory). For every element
of the algebra which is interpreted as a Hamiltonian, or any propagator from the associated
unitary Lie group being generated by a finite number of elements of the algebra (such as the
Ising model periodically kicked by the transversal magnetic field), we construct two infinite
sets of quantum invariants of motion, the conserved charges and the conserved currents. Is
is shown heuristically how to diagonalize these conservation laws. Explicit expressions of
the conserved charges are quite simple (much simpler than in general Heiseklyety (
or the Hubbard model [5], for example) though non-trivial.

Financial support from the Ministry of Science and Technology of R Slovenia is gratefully
acknowledged.
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